ISSN 1063-780X, Plasma Physics Reports, 20006, Vol. 32, No. 10, pp. 866-871. © Pleiades Publishing, Inc., 2006.
Original Russian Text © A.L. Laptukhov, G.P. Chernov, 2006, published in Fizika Plazmy, 2006, Vol. 32, No. 10, pp. 939-945.

SPACE

PLASMA

New Mechanism for the Formation of Discrete Stripes
in the Solar Radio Spectrum
A. L. Laptukhov and G. P. Chernov

Pushkov Institute of Terrestrial Magnetism, lonosphere, and Radio-Wave Propagation, Russian Academy of Sciences,

Troitsk, Moscow oblast, 142092 Russia
Received August 3, 2005; in final form, November 20, 2005

Abstract—Dispersion relations are derived for the eigenfrequency spectrum of a spatially periodic nonlinear
plasma resonators created in the solar atmosphere due to the development of thermal instability. The eigenfre-
quency spectra of such resonators are calculated, and it is shown that they are capable of generating tens of dis-
crete stripes (a so-called zebra structure) the number of which is independent of the ratio of the plasma fre-
quency to the gyrofrequency in the source. This may help to overcome all difficulties in explaining the large
number of stripes in the zebra structure, as well as the small magnitude of the magnetic field. The spatially peri-
odic plasma resonators under consideration act as a filter with numerous transparency windows separated from
one another by opaque regions. The number of stripes and their frequencies in the zebra structure depend on
the spatial period of plasma nonuniformity, which is equal to meters or decameters for conditions typical of the
solar atmosphere. The high brightness temperature of radio emission in the zebra structure is attributed to coher-
ent emission from a large number of identical small-scale plasma sources. Some regular properties of the

observed zebra structure are explained.
PACS numbers: 94.05.—a, 96.60.Tf
DOI: 10.1134/S1063780X06100060

1. INTRODUCTION

The zebra structure (ZS), or zebra pattern, in the solar
radio spectrum is produced by the emission of radio
waves excited simultaneously at many (up to several
tens) of close, approximately equidistant, discrete fre-
quencies. Several models for the formation of the ZS
have been proposed in the literature, but each of them
encounters a number of difficulties in interpreting the
data from new observations. Hence, it is still relevant to
find the true mechanism responsible for producing ZSs.
The regular ZS gradually came to be understood as being
caused by a mechanism based on the double plasma res-
onance, when the upper hybrid frequency at the discrete
levels in the solar corona becomes a multiple of the elec-
tron gyrofrequency [1, 2]. In order to explain the dynam-
ics of the stripes in the ZS, this mechanism, in particular,
suggests that there are fast variations in the magnetic
field in the source, but this is in conflict with the fact that
the magnetic field determined from the frequency sepa-
ration between the stripes is too weak.

In [3-5], a unified model was proposed in which the
formation of ZS stripes in the emission and absorption
spectra was attributed to the oblique propagation of
whistlers and the formation of fibers in the spectra was
attributed to the channeled propagation of whistlers
along a magnetic trap. This model explains the occa-
sionally observed continuous conversions of ZS stripes
into fibers and vice versa but it encounters serious dif-

ficulties in explaining the time and frequency stability
of ZS stripes over tens of seconds.

In searching for ways to overcome such difficulties,
anew ZS theory was recently proposed [6] in which the
underlying mechanism is the emission of the so-called
auroral choruses (magnetospheric bursts) via the
escape of a Z mode captured into regular plasma den-
sity variations. In this theory, however, the high inten-
sity of the emitted radiation cannot be explained due to
incoherent emission from separate individual sources.
In addition, the theory implies some stringent condi-
tions, such as the generation of a high-power ion acous-
tic wave. The theory developed in the present paper is
free of these drawbacks.

In the solar atmosphere, thermal instability can give
rise to nonlinear thermal structures in which the plasma
parameters, as well as the magnetic and electric fields,
vary periodically in space [7, 8]. In a direction perpen-
dicular to the magnetic field, the spatial period L on
which the plasma parameters in such thermal structures
vary is inversely proportional to the magnetic induction
B (hereafter, it is assumed that the electron collision fre-
quency V, in the solar atmosphere is much lower than
the electron gyrofrequency, B, = eB/(m,c)). For typical
parameters of the solar atmosphere, we have L = 1—
30 m. The period L also depends on the plasma temper-
ature T and density n, as well as on the difference
between the emission function and the plasma heating
function in the region under consideration. This is why
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the period can be much longer, L > 30 m, but only
under some very special conditions.

It is well known that the spectrum of natural oscilla-
tions of any finite-size body is discrete, which is a con-
sequence of the boundary conditions at the body sur-
face. Depending on particular circumstances, the spec-
trum of oscillations of an inhomogeneous plasma can
be either continuous or discrete [9]. As will be shown
below, the wave spectrum of an infinite plasma with
spatially periodic density variations exhibits both con-
tinuous and discrete properties: it consists of discrete
finite-width stripes, within each of which the frequency
depends continuously on the parameters of the wave
and of the plasma itself. It is therefore natural to
attribute the ZSs observed in the solar radio spectra to a
simple effect of the propagation of electromagnetic
waves through a plasma layer having a periodic struc-
ture: in essence, such a layer acts as a filter with numer-
ous transparency windows. The spectrum of the broad-
band electromagnetic radiation that was generated in
the solar atmosphere by any of the known mechanisms
and then passed through such a filter contains only
those frequencies that have been transmitted by the fil-
ter. This mechanism results in the ZS in the spectrum.

The goal of the present work is to prove this possi-
bility and to construct a model that explains the
observed regular properties of the ZS.

2. SPECTRUM OF EIGEN WAVES
IN A SPATIALLY PERIODIC PLASMA

We consider a one-dimensional case in which the
plasma and field parameters vary only along the x coor-
dinate with the period L, = L. We assume that the mag-
netic field is directed along the z axis, B = (0, 0, B), and
is thus perpendicular to the direction in which the
parameters in question vary. Let us calculate the eigen
waves in such a spatially periodic plasma. From Max-
well’s equations for the perturbed electric field vector
E*, we obtain

_4rndj
2 or’

*
VxVxE*+iaE = j=en(V,-V,),

¢ or (1)

where n = n(x) is a known periodic function of x with
the period L, = L. The perturbed electron and ion veloc-
ities, V, and V,, can be calculated from the hydrody-
namic equations in the immobile, cold, collisionless
(v, = 0) plasma approximation:

ov.. Z..
o = ZoCFi 4 7 [V, xB,], B,=-2

ot m,; m,;c
Z, =-1, Z =1

e l

2

The solution to set of Egs. (1) and (2) for the quantities
X=E,V, and V, can be sought for in the form

X = ReX,(x, 0, k)exp(i(kx — ot)). 3)
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In other words, we are considering waves propagating
in the direction along which the parameters of the
unperturbed plasma vary. In investigating the wave
propagation in periodic media, the parameter k is com-
monly referred to as the Bloch wave vector [10]. We
represent the electric field as

E=E (x, o, k)exp(ikx). 4)

With relationships (2)-(4), we readily reduce Eq. (1) to

2
VxVxE—m—ZE
c
0)2
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c(B —0))
2
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where n = n(x) and B = B(x) are known periodic func-
tions with the period L and ®, and ; are the electron
and ion plasma frequencies, respectively.

In the case under consideration, namely, B = (0, 0, B)
vector equation (5) has two independent solutions,
describing ordinary and extraordinary waves [1]:

E=(0,0,E), (6)
E=(E,E, 0). (7)

For solution (6), which corresponds to ordinary
waves and in which the perturbed electric field has the
only nonzero component, parallel to the unperturbed
magnetic field, Eq. (5) can be greatly simplified to
become

(D (D
df+ ——L2E=0, 0,=0]+0;. 8)
dx c

Since the frequency ), is a periodic function of the
coordinates, Eq. (8) is the familiar Hill equation [11],
whose solutions satisfy the equality

E(x+L) = E(x)exp(al), o = ik,

€))

where o is a complex number called the characteristic
index of the solution. In this case, the function (cf.
expression (4))

E(x)=E(x)exp(-ox), E,x+L) = E,(x) (10)

is periodic with the period L [11]. In the literature on
the propagation of electromagnetic waves in periodic
media, relationship (10) is known as the Bloch theorem
[10, 12].

Let us find an analytic solution to Eq. (8) in a partic-
ular case in which the nonuniform plasma density and
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magnetic field, n(x) and B(x), are approximated by step
functions:

n(x) =n;, B(x) =B,
n(x)=n,, BXx)=B, for
n(x+ L)=n(x), B(x+L)=B(x) forux,

where n,, n,, B;, and B, are constants.

for O<x<ux; <L,

(11)

xl<x<L=Xz,

In the frequency range 0)12,1 <w’< 0);2 , Eq. (8) has
a solution of the form

E = E_ cos(k;x)+ Esin(k;x),

(12)
kLEA/((DZ—(Dil)/C, 0<x<x, <L,
E = E;sinh(q,(x—x,)) + E,cosh(g,(x —x,)),
(13)

qZEA/(OJiz—O)z)/c, x;<x<x, = L.

Using the condition that the functions E(x) and dE/dx
are continuous at the point x = x; and taking into
account equality (9), we obtain a solution at the point
x=0:

E2 = ECCOS(klxl) + ESSin(klxl),

14
E, = ?{Escos(klxl)—Ecsin(klxl)}, (14)
2
E.£ = E,sinh(f)+ E,cosh(f), &=exp(ikL),
EE = Z—Z{Elcosh(f)+Ezsinh(f)}, (15)
1

S =q2(x;—xy).

Four linear homogeneous equations (14) and (15) for
the unknown constants E,, E,, E,, and E,. can have a
nontrivial solution only under the condition

g -2pE+1=0,—E=ptdp’ 1,

2 2
-k
p =cosh(f)cos(k,x;) + sinh(f)sin(klxl)b,
2q:k, (16)

cos(kL) = p,

o= ik = %ln{piA/(pz—l)}, mod(p) > 1.

mod(p) <1,

This is the sought-for dispersion relation for calculating
the frequency spectrum of wave perturbations (3) prop-
agating through a periodic medium in a periodic mag-
netic field that are described by formulas (11). We can
see that waves with the real Bloch wave vector k can
propagate only at frequencies for which mod(p) < 1.
The eigenfrequency spectrum depends implicitly on the
magnetic field only through the spatial period L, which
is inversely proportional to the magnetic field ampli-
tude when thermomagnetic structures are spatially peri-
odic.
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Note that, to within the notation, Eq. (8) coincides
with the one-electron Schrodinger equation for a one-
dimensional crystal [12]. It is therefore not surprising
that, to within the notation, dispersion relation (16)
coincides with that obtained in [12] for the ¥ function
of an electron in a crystal with a model, stepwise con-
stant, periodic potential.

In writing dispersion relation (16), we assumed that
the Bloch wave vector k is real, which corresponds to an
initial-value problem [9]. In solving the boundary-
value problem (in which the wave frequency is a given
real quantity) for mod(p) < 1, the formula cos(kL) = p
in dispersion relation (16) is satisfied. For mod(p) > 1,
we obtain from dispersion relation (16) the penetration
depth of the field into the medium: L, = l/o0 =
L/In(mod(p) + (p* - 1)'72).

For solution (7), which corresponds to extraordinary
waves, we obtain from vector equation (5) the equation

2 2

d EY+QE}, =0, Q=a+2-

2
dx c

2 2 2
(0] W, + W;

2 2 2 2 20
c\B,-0 B, -®

oo Bo. B,
¢’ B,-Z—m2 B:—w2
Note that, at the branch points ® = +B, ;, the quantity Q
has a removable singularity of the type co — co # o0; as a

result, Q is finite at these points. But if ®* + ac? = 0,
then we have Q = oo,

2 2
bc
2’

2
ac +®

a=

(17)

For the case

Q0<x<x)=0,>0, Q(x;<x<x,)=0,<0,
172

18
6=0" g=(-0p” n=1 ¥

(which will be denoted as the N = 1 case), we can see
that the solution to dispersion relation (17) coincides
with solution (8) and the dispersion relation for the
extraordinary waves in question coincides completely
with dispersion relation (16): cos(kL) = p = p,; more-
over, the quantities k; and ¢, are defined by the third and
fourth of formulas (18).

For O, <0and Q,>0(N=2),Eq. (17) can be solved
in a similar way. In this case, instead of dispersion rela-
tion (16), we arrive at

cos(kL) = p,=cosh(q,x;)cos(f>,)

2 2
. . q, —k;
+ sinh (g, x,)sin ,
(q1x1)sin(f>) 24,k (19)

12 12

ky=(0,2) ", ¢,:=(=0y) 7,

fa=ky(xy—x)), N =2
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For Q; > 0 and Q, > 0 (N = 3), solving Eq. (17)
yields the dispersion relation

cos(kL) = p;y=cos(k;x;)cos(f3)

in(kx,)sin(f )khk;
— S 1X1 S 3 2k1k2, (20)
k=007 k=(0)" fizk(x-x),

N = 3.
In the limit of an infinitely small discontinuity such that
k, = k,, dispersion relation (20) gives

cos(kL) = cos(k,L) — k = i(wz—ﬁ)i)m/c.

We can see that, in this limiting case, the wave spec-
trum coincides with that in the case of a homogeneous
plasma.

Finally, for O, <0 and Q, <0 (N = 4), the dispersion
relation can be written as
cos(kL) = p,=cosh(gx,)cosh(f,)

2 2
q, t 49>

24,9, ’
a1=(-0)", ¢=(-0)",
fa=qy(x,—x;), N =4

+ sinh(gx,)sinh(f,) 21)

3. ANALYSIS OF THE PROPERTIES
OF SOLUTIONS TO THE DISPERSION
RELATIONS

Note that the dispersion relations for ordinary waves
(6) can be derived from dispersion relations (16), (19),
(20), and (21) for extraordinary waves (7) by formally
setting B, ; = 0. In this case, the quantities k and ¢
defined by formulas (12) and (13) coincide with those
defined by formula (18).

Itis convenient to express the frequencies ®, ®,,, B,,
and B; in units of ®,,, the quantities k and ¢ in units of
®,/c, and the lengths x; and x, = L in units of ¢/®,; in
order to write dispersion relations (16), (19), (20), and
(21) in dimensionless units, none of which are explic-
itly dependent on ®,,. This indicates that, if the solu-
tions to these equations are known for some values of
the plasma and field parameters, then, when the densi-
ties n, and n, increase ¢° times, when the magnetic field
increases ¢ times, and when the spatial period L
decreases ¢ times, all the wave frequencies (the solu-
tions to the equations) increase g times.

We first consider ordinary waves (6) because the
dispersion relation for them is simpler than that for the
extraordinary waves (see dispersion relations (16) and
(20) with B, ;= 0).

Figure 1 shows how the wave frequency o, i.e., the
solution to dispersion relation (16), depends on the
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Fig. 1. Frequency of ordinary waves (6) vs. parameter
cos(kL) for ny = 10! em™3, ny =ny/9, x; =09L, and L =
3 m. The large symbols correspond to the frequencies ® <
®, (N = 1), and the small symbols correspond to the fre-

quencies ® > M, (N = 3). The width of the five transparency
windows, AF, at the frequencies ® < ®, (N = 1) increases
with frequency: AF; = 0.06, AF, = 0.12, AF5 = 0.27,
AF, =0.73, and AF5 =2.56 MHz.

parameter cos(kL) (where k is the Bloch wave vector)
for n, = 10" cm™, n; = n,/9, L =3 m, and x; = 0.9L.
Note that (see also [12]) this dependence is non-single-
valued: to one value of k there correspond many fre-
quencies. We can see that, in the frequency range ®,, <
® < ), the spectrum consists of five very narrow trans-
parency stripes separated from one another by broad
opaque regions (forbidden zones). In the frequency
range M > ®,,, the spectrum consists of numerous trans-
parency stripes, separated by comparatively narrow
opaque regions, in which the curve w(cos(kL)) is dis-
continuous. In the limit ® —— oo, the width of the
opaque regions approaches zero. The value L =3 m was
chosen in order to obtain the observed frequency differ-
ence between the neighboring narrow opaque regions.
If the spatial period L is set to be m times longer, then
the number of stripes in the frequency range m,; < ® <
®,, is m times larger, so the frequency difference is then
m times smaller.

From Fig. 2 we can see that the difference between
the neighboring frequencies decreases with increasing
spatial period L and that, at a fixed L value, it increases
with frequency. These results agree with the observa-
tional data [13].
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Fig. 2. The first seven eigenfrequencies of waves described
by Eq. (5) with B =0 and cos(kL) = 1 vs. spatial period: (a)
L=1-25m for n; = 1.0 x 10! cm™ and n, = 1.2 x
10" cm™ and (b) L=15-35mforn; =5x 108 cm™ and

ny,=6x 108 em™.
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Fig. 3. The first seven eigenfrequencies F of waves (6) vs.
ratio s = ny/ny in the case N =1 for L =30 m, n; =5 X

108 cm™3, and cos(kL) = 1.

If the frequency scale F in Fig. 2 is increased, say,
by a factor of r = 10 and the spatial period is shortened
by the same factor, r = 10, then the resulting figure will
describe the spectrum of eigen waves in a plasma with

LAPTUKHOV, CHERNOV

densities n; and n, higher than those in the original fig-
ure by a factor of r* = 100.

For waves (6), there exist solutions with N = 1 and
N = 3. For waves (7), solutions with N =1, 2, and 3 are
possible. At N = 4, there are no solutions because the
left-hand side of dispersion relation (21) is less in abso-
lute value than unity, while the right-hand side always
exceeds unity.

From Fig. 3 we can readily see that, at N = 1, the fre-
quency F depends weakly on the parameter s = n,/n,.
For N = 3, the first seven eigenfrequencies increase
approximately linearly with this parameter, from 206—
212 MHz at s = 1.05 to 284-293 MHz at s = 2. Within
the interval s = 1.05-2, the difference between the
neighboring frequencies changes only slightly. The
larger the ratio n,/n, at a fixed value of L, the greater the
number of transparency windows in the frequency
range ®,; < ® < M.

Figure 4 shows how the first seven eigenfrequencies
F depend on the magnetic induction in the range B = 0—
70 G for N=1, 2, and 3, the parameter values being L =
30 m, n,=5 x 10® cm>, n, = 6 x 10® cm, and
cos(kL) = 1. We can see that, as the magnetic induction
Bincreases, the frequency difference F,—F increases at
N =1 and 3 and decreases at N = 2, while, on the con-
trary, the frequencies themselves decrease at N =1 and
3 and increase at N = 2.

The high brightness temperature of the radio emission
in a ZS—a factor required for reliable detection of such
structures—is ensured by coherent emission from a large
number of identical, spatially periodic plasma layers.

In the linear approximation at hand, the wave ampli-
tudes cannot be determined. It is known from observa-
tions that the wave amplitudes at the neighboring fre-
quencies of the ZS are comparable in magnitude. This
can be readily explained by taking into account the fact
that the radio source in the solar atmosphere is broad-
band (i.e., the intensity of the source varies insignifi-
cantly over a wide frequency band) and that the peri-
odic plasma structure, in essence, acts as a filter with
numerous narrowband frequency windows, which
transmit the waves. The natural result is the formation
of a ZS. Let us address this point in more detail.

Consider the propagation of a broadband radio-fre-
quency wave in a plasma along the x axis. Let the
plasma be homogeneous in the regions x < 0 and x >
NL, and let there be N identical inhomogeneous plasma
layers, each having the thickness L, in the region 0 <x <
NL. In this case, in the limit N > 1, the region 0 < x <
NL can be regarded as an “infinite” periodic medium to
which the above results can be applied. In essence, such
a region operates as a filter with numerous frequency
windows separated from one another by opaque zones
(see Fig. 1). Of all the frequencies of an incident broad-
band radio-frequency wave, such a filter will transmit
only those that correspond to its transparency windows.
The wave amplitudes at the frequencies corresponding
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Fig. 4. The first seven eigenfrequencies of all three wave
branches vs. magnetic induction B for L =30 m, ny =5 X

108 em™, 1y = 6 x 108 cm™, and cos(kL) = 1.

to opaque zones are attenuated within the filter to
become nearly zero at its exit (x = NL). It is such a filter
that produces what is commonly called a ZS from the
originally broadband solar radio spectrum. This is the
essence of the physical mechanism proposed here to
explain the formation of ZSs in the radio emission spec-
tra from the solar plasma. In the mechanism proposed,
the originally broadband solar radio waves can be gen-
erated by any of the known mechanisms [14], which are
not, however, the subject of the present study.

4. CONCLUSIONS

The results obtained can be briefly summarized as
follows.

(1) Numerous ZS stripes observed in the solar radio
spectra can naturally be explained as resulting from the
propagation of electromagnetic waves through a peri-
odically inhomogeneous plasma, which functions as a
frequency filter having many narrowband transparency
windows. Such a spatially periodic plasma (with a spa-
tial period equal to meters or decameters) is naturally
produced in the solar atmosphere due to the develop-
ment of thermal instability.

(i) The narrow dark stripes observed in the solar radio
spectra are merely a consequence of the existence of nar-
row opaque zones in a periodic medium (see Fig. 1).

(iii) Since the conditions for the onset of thermal
instability in the solar atmosphere are more favorable in
the temperature range 7 > 10° K, which corresponds to
low plasma densities and low eigenfrequencies of the
radio waves, ZSs in the solar radio spectra should be
more often observed at meter wavelengths than in the
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decimeter and centimeter wavelength ranges. This con-
clusion agrees with the observational data.

(iv) The higher the frequency, the larger the fre-
quency difference between the neighboring stripes in
the observed ZSs. This result corresponds to the propa-
gation of ordinary waves (6), with the electric field vec-
tor parallel to the unperturbed magnetic field, through a
spatially periodic plasma.

(v) The number of discrete stripes is independent of
the ratio of the plasma frequency to the electron gyrof-
requency in the source. This result may help to over-
come all difficulties in explaining the large number of
stripes in the ZS, as well as the small value of the mag-
netic field, which is determined from the frequency sep-
aration between the stripes in, e.g., a model based on
the double plasma resonance.

(vi) Observations of ZSs in the solar radio spectra
give indirect experimental evidence for the existence of
small-scale periodic structures with spatial periods equal
to meters or decameters in the solar atmosphere and pro-
vide the possibility for their experimental study. Theoret-
ically, there is no doubt that such structures do exist.
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